Linear least squares estimation

A short primer

P. Dewilde - N&S
Stochastic variables

We look at stochastic variables on a given probability space! Assumptions on the variables (say \(A, B, C\) or \(X[n], X[n-1], \ldots\))

- Zero means: \(\mathbb{E}A = \mathbb{E}B = \cdots = 0\)
- Covariance data known: \(\mathbb{E}|a|^2, \mathbb{E}(ab^*)\), etc...

where '\(\mathbb{E}\)' is the 'means' or expectation operator; \(\mathbb{E}\) is linear in its arguments:

\[
\mathbb{E}(k_1A + k_2B) = k_1\mathbb{E}(a) + k_2\mathbb{E}(b)
\]
Two variable case

Given two stochastic variables A and B

Try to estimate B from knowledge (samples) of A!

Estimate: B^\wedge. We take it proportional to A: $B^\wedge=kA$, and wonder what the best coefficient k could be (linear estimation)!

We use the Wiener principle:

The error (innovations) $B-B^\wedge$ will be minimal in the mean least square sense when it is uncorrelated with the known information:

$$E(|B-B^\wedge|^2) \text{ will be minimal if } E(B-B^\wedge)A^* = 0$$

hence: $k=E(BA^*)/E(|A|^2)$
Geometric interpretation

Stochastic variables can be represented as vectors in an (abstract) space that spans them - in fact linear combinations of stochastic variables are nothing but linear combinations of functions on the probabilistic 'space'. Distance is measured by their variance:

$$\|A - B\| = \sqrt{\text{E}(|A - B|^2)}$$

orthogonality means

$$\text{E}[(B - B^\ast)A^\ast] = 0$$
Ilse in a stochastic process

Estimate $X[n]$ from $X[n-1] \cdots X[n-p]$

Linear estimation:

$$X^\wedge [n] = -a_1 X[n-1] - a_2 X[n-2] - \cdots - a_p X[n-p]$$

Gives for the error or innovations:

$$X[n] - X^\wedge [n] = X[n] + a_1 X[n-1] + \cdots + a_p X[n-p]$$

which should be uncorrelated to the known data

(Wiener principle)
Wiener principle (2)

Hence:
\[\mathbb{E}[(X[n] - X^*[n])X^*[n-1]] = 0; \]
\[\mathbb{E}[(X[n] - X^*[n])X^*[n-2]] = 0; \]
\[\vdots \]
\[\mathbb{E}[(X[n] - X^*[n])X^*[n-p]] = 0 \]

For example (first equation):
\[\mathbb{E}(X[n]X[n-1]^*) + a_1 \mathbb{E}(X[n-1]X[n-1]^*) + \cdots + a_p \mathbb{E}(X[n-p]X[n-1]^*) = 0 \]

Let's us now assume the process to be stationary in the sense:
\[\mathbb{E}(X[n]X[n]^*) = \mathbb{E}(X[n-1]X[n-1]^*) = \cdots = \mathbb{E}(X[n-p]X[n-p]^*) = \kappa_X[0] \]
\[\mathbb{E}(X[n]X[n-1]^*) = \mathbb{E}(X[n-1]X[n-2]^*) = \cdots = \kappa_X[1] \]
\[\mathbb{E}(X[n-1]X[n]^*) = \mathbb{E}(X[n-2]X[n-1]^*) = \cdots = \kappa_X[-1] \]
\[\text{etc...} \]
Wiener principle (3)

then the equations become:

\[
\begin{align*}
\kappa_x[1] + a_1\kappa_x[0] + a_2\kappa_x[-1] + \cdots + a_p\kappa_x[-p + 1] &= 0 \\
\kappa_x[2] + a_1\kappa_x[1] + a_2\kappa_x[0] + \cdots + a_p\kappa_x[-p + 2] &= 0 \\
&\quad \cdots \\
\kappa_x[p] + a_1\kappa_x[p - 1] + a_2\kappa_x[p - 2] + \cdots + a_p\kappa_x[0] &= 0
\end{align*}
\]

To this we add (as first equation) the equation describing the variance of the error:

\[
\mathbb{E}((X[n] - X^*[n])^2) = \mathbb{E}((X[n] - X^*[n])X[n]^*) = \kappa_x[0] + a_1\kappa_x[-1] + \cdots + a_p\kappa_x[-p]
\]

(because $X[n]-X^*[n]$ is orthogonal to $X[n-1] \cdots X[n-p]$)
Matrix form

Putting all this in matrix form, we obtain:

\[
\begin{bmatrix}
\kappa_X[0] & \kappa_X[-1] & \cdots & \cdots & \kappa_X[-p] \\
\kappa_X[1] & \kappa_X[0] & \kappa_X[-1] & \kappa_X[-p+1] \\
\vdots & \kappa_X[1] & \kappa_X[0] & \vdots & \vdots \\
\vdots & \vdots & \vdots & \kappa_X[-1] & \kappa_X[-1] \\
\kappa_X[p] & \kappa_X[p-1] & \cdots & \kappa_X[1] & \kappa_X[0]
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1 \\
1
\end{bmatrix}
=
\begin{bmatrix}
F_p \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}
\]

where \(F_p \) is the variance of the \(p \)th order innovation. The matrix in the equation is called the ‘covariance matrix’ \(K_p \).

These are the so called NORMAL or Yule-Walker equations.
Property of the covariance matrix

If the process $X[n]$ is undetermined (i.e. if no linear combination of the variables has variance exactly zero), then the covariance matrix K_p is strictly positive definite (and hence invertible).

note: we say that a matrix K is positive definite if for all row-vectors u of suitable dimension, $uKu^ \geq 0$, and strictly positive definite if it is positive definite and in addition, $uKu^* = 0 \Rightarrow u = 0$.*

In the following slide we give an indication why this is so! In particular, an undetermined covariance matrix is non singular.
Motivation of the positive definiteness

We have:

\[K_p = \mathbb{E} \begin{pmatrix} X[n] \\ X[n-1] \\ \vdots \\ X[n-p+1] \\ X[n-p] \end{pmatrix} \begin{pmatrix} X[n] & X[n-1] & \cdots & X[n-p+1] & X[n-p] \end{pmatrix} \]

Now, let \(u \) be a vector of dimension \(p+1 \), then \(uK_p u^* = \mathbb{E}(WW^*) \), for

\[W = u_0 X[n] + u_1 X[n-1] + \cdots + u_p X[n-p] \]

Hence, for all such \(u \), \(uK_p u^* \geq 0 \), and if this would equal zero, then the corresponding stochastic variable \(W \) would have zero variance, in which case the process would not be undetermined.
Toeplitz matrices

In addition to being positive definite, the covariance matrix of a time invariant stochastic process is Toeplitz meaning that elements on the same principal diagonals are equal: $K_{ij} = \kappa|i-j|$. This property is exploited in the Levinson and Schur algorithms.
Fourier transform and the Kolmogoroff isomorphism

Idea: represent the ‘stochastic function’ $X[n]$ by a function on the unit circle of the complex plane

$$X[n] \approx e^{jn\theta}$$

Also ‘inner products’ must be converted. Let

$$W_X(\theta) = \sum_{k=-\infty}^{\infty} \kappa_X[k]e^{-jk\theta} \quad \text{the Power Spectral Density Function}$$

and let us define the inner product on function of the unit circle:

$$<f(e^{j\theta}), g(e^{j\theta})>_{W_X} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{j\theta})W_X(\theta)g(e^{j\theta})^* d\theta$$

then we get

$$\kappa_X[n-m] = \text{E}(X[n]X[m]^*) = <e^{jn\theta}, e^{jm\theta}>_{W_X} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{jn\theta}W_X(\theta)e^{-jm\theta} d\theta = \kappa_X[n-m]$$
Interpretation

The ‘abstract’ stochastic inner product gets replaced by a concrete inner product of functions on the unit circle, weighted on the Power Density Function W_x. This simple device will allow us to study stochastic modeling through filtering. A parametric model will then approximate the power spectral density function. The next sheet shows a direct application of this theory.
Generating a Power Spectral Density Function by filtering

The principle:

\[
\begin{align*}
\text{stochastic process} &\quad X[n] \quad \text{with PSDF} \quad W_X(\theta) \\
\text{Filter with transfer function} &\quad H(e^{j\theta}) \\
\text{stochastic process} &\quad Y[n] \quad \text{with PSDF} \quad |H(e^{j\theta})|^2 W_X(\theta)
\end{align*}
\]

so if we choose \(X[n] \) to be white noise, then \(W_X(\theta) = 1 \), then the output stochastic process has PSDF \(|H(e^{j\theta})|^2 \).

Proof: by the Kolmogoroff isomorphism! Let \(h[k] \) be the impulse response of the filter, corresponding to \(H(e^{j\theta}) \). Then

\[
Y[n] = \sum_{k=0}^{\infty} h[k] X[n - k] \leftrightarrow \sum_{k=0}^{\infty} h[k] e^{j(n-k)\theta} = e^{jn\theta} H(e^{j\theta})
\]
Proof (continued)

and we find for the covariance:

\[\kappa_Y[n-m] = \mathbb{E}(Y[n]Y[m]^*) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [e^{jn\theta} H(e^{j\theta})] W_X(\theta)[e^{jm\theta} H(e^{j\theta})]^* d\theta \]

\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\theta})|^2 W_X(\theta)e^{j(n-m)\theta} d\theta \]

hence, by reverse Fourier transformation:

\[W_Y(\theta) = |H(e^{j\theta})|^2 W_X(\theta) \]

qed

(a direct proof is possible as well, but is complicated!)
The autoregressive model

Let us take a p^{th} order ‘autoregressive’ model for a process. Suppose that $X[n]$ satisfies

$$X[n] = -A_{p,1}X[n-1] - \cdots - A_{p,p}X[n-p] + \sigma N[n]$$

in which $N[n]$ is unit variance white noise ($\sigma > 0$). The filtering picture is, with

$$A_p(z) = 1 + A_{p,1}z^{-1} + \cdots + A_{p,p}z^{-p}$$

and by the previous filtering theory, we find for the PSDF:

$$W_X(\theta) = \frac{\sigma^2}{|A_p(e^{j\theta})|^2}$$
Normal equations

One may wonder which equation the \(p \)th order coefficients satisfy, if indeed this is a good model for the process. With little effort one finds (by the white noise property):

\[
\begin{bmatrix}
\kappa_X[0] & \kappa_X[-1] & \ldots & \kappa_X[-p] & \ldots \\
\kappa_X[1] & \kappa_X[0] & \ddots & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\kappa_X[p] & \kappa_X[0] & \cdots & \kappa_X[0] & A_{p,1} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
\end{bmatrix}
\begin{bmatrix}
1 \\
A_{p,1} \\
A_{p,2} \\
\vdots \\
A_{p,p} \\
0
\end{bmatrix} =
\begin{bmatrix}
\sigma^2 \\
0 \\
0 \\
\vdots
\end{bmatrix}
\]

In other words, the \(p \)th order least squares predictor of a process that satisfies a \(p \)th order autoregressive model produces an innovation process that is white.