Hardware Modeling
Module 1

• Objective
 • Electronic systems and their requirements
 • Integrated circuits
 • Design styles
Electronic systems

- Systems on chip are everywhere

Technology advances enable increasingly more complex designs
- Challenges:
 - Ride the technology wave
 - Cope with design complexity
Projecting the future
Trends

Figure SYSD5 SOC Consumer Portable Design Complexity Trends
Integrated circuits

- Systems on Chip (SoC)
 - Multi-processing SoCs (MPSoCs)
- Systems in a package (SiP)
- Silicon technology (CMOS)
 - Down scaling of feature sizes
 - Nanotechnologies on the horizon …
- Different design styles
 - To address performance and cost issues
Integrated Circuit Design Styles

Digital Circuit Implementation Approaches

- Custom
 - Cell-based
 - Standard Cells
 - Compiled Cells
 - Macro Cells
- Semicustom
 - Array-based
 - Pre-diffused (Gate Arrays)
 - Pre-wired (FPGA's)
Transition to Automation and Regular Structures

Intel 4004 ('71)
Intel 8080
Intel 8085
Intel 8286
Intel 8486

Courtesy Intel
Multi Core designs
Module 2

• Objective
 • Electronic design automation
 • Synthesis and optimization
 • Multi-criteria optimization
Computer-aided design

- Enabling design methodology
 - Support large scale system design
 - Design optimization, trade-offs
 - Reduce design time and time to market
micro-Electronic System Level design

- Conceptualization and modeling
 - Hardware description languages
- Synthesis and optimization
 - Model refinement
- Validation
 - Check for correctness
Synthesis history

- Few logic synthesis algorithms and tools existed in the 70’s
- Link to place and route for automatic design
 - Innovative methods at IBM, Bell Labs, Berkeley, Stanford
- First prototype synthesis tools in the early 80s
 - YLE [Brayton], MIS [Berkeley], Espresso
- First logic synthesis companies in the late 80’s
 - Synopsys and others
- Today: Cadence, Mentor, Forte Design, Xilinx Vivado HLS
Modeling abstractions

- System level
 - Untimed specification
- Architectural level
 - Operations implemented by resources
- Logic level
 - Logic functions implemented by gates
- Geometrical level
 - Transistors and wires
System synthesis

• Architectural-level synthesis
 • Determine macroscopic structure
 • Interconnection of major building blocks
• Logic-level synthesis
 • Determine the microscopic structure
 • Interconnection of logic gates
• Physical design
 • Geometrical-level synthesis
 • Determine positions and connections
Synthesis and optimization

• Synthesis with no optimization has no value
• Optimization is the means to outperform manual design
• Objectives
 • Performance
 • Frequency, latency, throughput
 • Energy consumption
 • Area (yield and packaging cost)
 • Testability, dependability, …
• Optimization has multiple objectives
 • Trade off
Pareto points

• Multi-criteria optimization
• Multiple objectives
• Pareto point:
 • A point of the design space is a Pareto point if there is no other point with:
 • At least one inferior objectives
 • All other objectives inferior or equal
Combinational circuit optimization
Optimization trade-off in sequential circuits
Example: Differential equation solver

diffeq {
 read (x, y, u, dx, a) ;
 repeat {
 xl = x + dx;
 ul = u – (3 . x . u . dx) – (3 . y . dx) ;
 yl = y + u . dx ;
 c = x < a ;
 x = xl; u = ul; y = yl ;
 } until (c);
 write (y)
}
Example

* ALU

STEERING & MEMORY

CONTROL UNIT

* ALU

* ALU

STEERING & MEMORY

CONTROL UNIT
Example

Area

Latency

(2,2)

(2,1)

(1,2)

(1,1)
Summary

• Computer-aided IC design methodology:
 • Capture design by HDL models
 • Synthesize more detailed abstractions
 • Optimize critical parameters
• Computer-aided system design methodology:
 • Support for Hardware/Software co-design
 • Synthesis of hardware, software and interfaces
• Evolving scientific discipline