MSc SS Thesis Presentation

Impedance-based bioassay for characterization of single malignant melanoma cancer cells usinG CMOS-MEA systems

Makrina Sekeri

Malignant Melanoma (MM) is the most aggressive type of skin-cancer. Current diagnostic tools for the detection of malignancies of the skin (MM cancer) include histological, optical, ultrasound, and impedance-based techniques. The inadequacies of the first three practices are overwhelmed by the Electrical Impedance Spectroscopy (EIS) method. EIS overcomes reported spatiotemporal tradeoffs as a label-free and optics-free analytical method. Yet, MM’s enhanced heterogeneity and metastatic potential still results in misdiagnosis, or late diagnosis leading to stages characterized by high mortality rates. Important biological information and processing ability on single-cell level is missing. Single-cell dynamics recorded with a high-throughput system, contain important biological information on the heterogeneous subpopulations which are responsible for the MM aggressiveness.

This project aims to investigate experimentally the possibility and capabilities of such a bioassay development, create working protocols and generate a fundamental basis for analysis and interpretation of the big-data-sets which derive from Impedance monitoring from a high-throughput transducer.

Experiments were performed, employing two diverse, human-derived, MM cancer cell-lines, and using a high-throughput HD-MEA system with a 1024-channel impedance readout unit developed at IMEC, in Belgium. The measurements were realized at 1kHz aiming to extract Rseal information. The main proposal presents an experimental protocol of mid-term and long-term experiments Temporal and spatial resolutions were enhanced (Control System Automation), allowing for implementation of an experimental set to test the assay’s capabilities and determine any necessary additions to make the assay more robust for research (i.e. Z-Map, templates and scripts for OriginLab and Matlab, statistical methods for validation of findings on the big-data sets, optimizations in the experimental process, etc).

Additional information ...

Overview of MSc SS Thesis Presentation


Microelectronics Colloquium

Sten Vollebregt, Massimo Mastrangeli, Daniele Cavallo

Tenure track colloquium

Daniele Cavallo (TS group); wideband phased arrays for future wireless communication terminals, Massimo Mastrangeli (ECTM Group); Towards smart organs-on-chip, Sten Vollebregt (ECTM group) Emerging electronic materials: from lab to fab

Signal Processing Seminar

Krishnaprasad Nambur Ramamohan

Signal processing algorithms for acoustic vector sensors

Symposium MRI for Low-Resource Setting

Steven Schiff, Johnes Obungoloch

Sustainable Low-Field MRI Technology for Point of Care Diagnostics in Low-Income Countries

Kick-off meeting of the project "A sustainable MRI system to diagnose hydrocephalus in Uganda"

Signal Processing Seminar

Peter Gerstoft

Machine learning in physical sciences

Machine learning (ML) is booming thanks to efforts promoted by Google. However, ML also has use in physical sciences. I start with a general overview of ML for supervised/unsupervised learning. Then I will focus on my applications of ML in array processing in seismology and ocean acoustics. This will include source localization using neural networks or graph processing. Final example is using ML-based tomography to obtain high-resolution subsurface geophysical structure in Long Beach, CA, from seismic noise recorded on a 5200-element array. This method exploits the dense sampling obtained by ambient noise processing on large arrays by learning a dictionary of local, or small-scale, geophysical features directly from the data.

Signal Processing Seminar

Aydin Rajabzadeh

manufacturing defect detection