MSc SS Thesis Presentation

Direction-of-Arrival Estimation using an Unsynchronized Array of Acoustic Vector Sensors

Bart Coonen

Direction-Of-Arrival (DOA) estimation of acoustic signals is of great interest in various applications including battlefield acoustic and noise localization. Acoustic sensors are employed in an array configuration to estimate DOAs based on the time differences of arrival DOAs. However, the acoustic sensors in the network have all their own Data AcQuisition (DAQ) unit with independent clocks than, it might not be possible to perfectly synchronize the network which affects the performance of the time differences of arrival reliably.  

In this thesis  we consider the issue of clock synchronization errors in a network where Acoustic Vector Sensors (AVSs) are used. AVSs are shown to be advantageous in terms of direction finding compared to conventional Acoustic Pressure Sensors (APSs) due to their directional particle velocity measurement capability. Initiallity the measurement model for AVSs is presented. After that the behavior of the clocks is incorporated in the measurement model of the full array setup. Subsequently, the effects of the clocks on the MVDR DOA estimation method is discussed.

  The model with clock errors is used in the development of three new DOA-estimation methods. The first two techniques are eigenstructure methods that are capable of finding the DOAs regardless of the accuracy of the synchronization. However, to find the DOAs with high accuracy in a real-time application these methods are not due to their high computational cost. Alternatively, the third proposed algorithm takes the DOA estimate from previous methods with low accuracy as its input. The algorithm estimates the DOA in an iterative fashion with high accuracy based on these estimates with low accuracy.  

Finally, measurements are conducted in a controlled environment in order to show that these methods are usable in practical situations.

Additional information ...

Overview of MSc SS Thesis Presentation


MSc SS Thesis Presentation

Guillermo Ortiz Jiménez

Multidomain Graph Signal Processing: Learning and Sampling

Sparse sampling for tensors and graphs

MSc SS Thesis Presentation

Haidong Hao

Vessel Layer Separation of X-ray Angiographic Images using Deep Learning Methods

Fast solutions based on a fully convolutional network (FCN) trained by conventional loss or adversarial loss.

MSc TC Thesis Presentation

Feng Ma

Respiration monitoring based on information fusion from Impedance pneumography and Electrocardiography

With known respiration information, corresponding parameters in both time domain (respiratory rate) and frequency domain (respiratory power) can be extracted to indicate the health condition.

Signal Processing Seminar

Pim van der Meulen

Low-cost sparse sensing designed for specific tasks

MSc TC Thesis Presentation

Lichen Yao

Bluetooth Direction Finding

This thesis project focuses on the algorithm developement and practical considerations for Indoor Direction Finding feature that will be incorporated in the next generation Bluetooth standard.

Signal Processing Seminar

Tuomas Aittomäki

Tutorial on: Sum-of-squares Representation in Optimization and Applications in Signal Processing

Signal Processing Seminar

Krishnaprasad Nambur Ramamohan

Signal processing algorithms for acoustic vector sensors

Signal Processing Seminar

Farnaz Chamanzadeh

Accurate timing and positioning through an optical-wireless distributed time and frequency reference

Signal Processing Seminar

Aydin Rajabzadeh

manufacturing defect detection